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Abstract 

Small datasets are the reality in many real-world applications. This presents a serious 

challenge to the practicability of convolutional neural networks, which require large data sources 

to properly train. This paper investigates methods of transfer learning for use on small-scale 

datasets in computer vision applications. The dataset used here consists of 400 images of beer 

labels divided evenly across two representational classes. Two key features of this dataset make 

it difficult for convolutional neural networks to work with; its small size, and its intra-class 

representational diversity (two members of the same class may be stylistically very different). 

Because small data require compact, well regularized models to avoid overfitting (Chollet, 2018, 

130), this dataset constrains classifier size. However, intra-class diversity and the presence of 

subtle class features demands higher level feature representation. Experimentation begins by 

establishing the relative difficulty of this dataset, where simple convolutional neural networks 

capable of 82% or better on the well-known cat-dog classification problem show results no better 

than 55-60% here. Next, through data augmentation, feature extraction and fine-tuning 

techniques in transfer learning, we construct several models capable of classification accuracy up 

to 80%, even on this very challenging dataset.  

Introduction 

This paper evaluates the results of several transfer learning methods, including feature 

extraction and fine tuning with data augmentation, on a challenging dataset of small size with 

high intra-class diversity and subtle class features. Using 400 images of different beer labels 
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handpicked for the purpose of presenting significant challenges to traditional CNN classification 

methods, we establish a baseline total accuracy of only 55-60% for a basic convolutional model. 

The ability of this admittedly simple model to classify images from the well-known cat-dog 

classification problem at 82% accuracy or better underscores the relative difficulty of our current 

dataset.  

Next, we demonstrate how accuracy of up to 80% is achievable using data augmentation 

and transfer learning techniques including feature extraction and fine-tuning. Pretrained models 

including VGG16, Xception, and MobileNet are all evaluated based on performance with this 

dataset. This paper concludes with a discussion of key differences between each of these models 

and an attempt is made to uncover essential differences in feature representation relevant to the 

current dataset. 

Literature Review 

The recent literature is replete with work on the topic of adapting CNN architectures to 

operate in diverse circumstances with minimal data. One popular method of grappling with 

scarce data is to harness generative adversarial networks for the purpose of producing new 

observations with which to pad the training data. This approach has shown to be useful in credit 

card fraud detection where the extreme imbalance of classes between fraudulent and non-

fraudulent transactions creates the need for a great deal of observations (Fiore, De Santis, Perla, 

Zanetti, and Palmieri, 2019). It has proven vital in certain facial recognition tasks as well, where 

even databases of 60,000 images are considered relatively small and can be difficult to train on 

without augmentation from artificially generated images (Saez, Ming, and Hartnett, 2021). 

Although recent work has shown promise for more data efficient GAN training (Zhao, Lie, Lin 
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Han, and Zhu, 2020) GANs remain impractical for datasets with only a few hundred examples 

and high levels of intra-class diversity.  

Transfer learning, the art of repurposing models which have been pre-trained on abundant 

data sources to suit new applications in data-exiguous circumstances via fine-tuning or feature 

extraction, is another popular approach to grappling with the problem of minimal data. This 

method has shown to be successful in such disparate areas as battery capacity estimation, where 

training on minimal examples is computationally desirable (Yihuan, Kang, Xuan, Yanxia, and 

Zhang, 2021) and tumor classification, where the availability of public datasets may be minimal 

(Kim et.al, 2020). Transfer learning methods have also been successful while training on 

minimal examples in the identification of rice plant disease (Chen, Nanehkaran, Zhang, and Zeb, 

2021) and many other applications.  

The advantages to leveraging higher level feature extraction from models trained on 

ImageNet or other databases is well established, and there now exists an abundance of pre-

trained models to choose from, each with distinct advantages. The speed, efficiency, and 

portability of MobileNet, for example, makes it a desirable transfer learning candidate for such 

tasks as object detection in autonomous vehicles (Carranza-Garcia, Torres-Mateo, Lara-Benitez, 

and Garcia-Gutierrez, 2021). Bulkier models, such as ResNet50 and VGG16 provide value as the 

basis for feature extraction in applications where processing costs are less of a concern, such as 

detecting signs of bleeding in the digestive tract using endoscopic images (Caroppo, Leone, and 

Siciliano, 2021). Whatever the application, subtle differences between models can lead to big 

differences in classification performance. When engaging in transfer learning for the purpose of 

solving small data classification problems, understanding these differences is vital to success. 
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Data 

Beer label images provide a rich and diverse data source for the project at hand. This 

dataset was collected via Google Image search and contains 400 images of beer can labels 

divided equally into representations of animate entities and representations of inanimate entities. 

Image selection was done with the specific intention of developing a challenging dataset with 

significant intra-class diversity. Where possible, similar styles were paired across classes. This 

was done with the intention of minimizing potential for stylistic elements inherent in certain 

brands from becoming identifiable as differentiators of class. Image size and quality are variable 

by design. 

Here the animate class includes both realistic and cartoon-like depictions of human 

beings, animals, and mythical creatures. Only those creatures with identifiable facial features are 

included (no shellfish, for example). Some labels included in the animate class depict creatures 

which are common to the class (such as people and dogs). Others in the animate class are unique 

instances which represent the sole example of their species in the dataset (only one image of a 

turtle, for example). Among the images representing the inanimate class, a mix of landscapes, 

buildings, vehicles, and geometric patterns can be found. Figure 1.1 below illustrates a few 

examples from each class.  
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Figure 1.1 

Animate Class Inanimate Class 

  

  
 

Methods 

 To evaluate the performance of transfer learning methods on this dataset, we compare 

three pre-trained convolutional models; Xception, MobileNet, and VGG16, run end to end on an 

augmented data generator which stretches, rotates, and inverts images in order to maximize the 

very small amount of image data available. In each case, we leverage the higher-level 

representations generated by these more complex, pre-trained models via feature extraction and 

fine-tuning. These features feed forward into an untrained classifier consisting of two hidden 

layers with dropout, and binary output, which sits on top of the convolutional base of each 

pretrained model.  
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Contrary to common advice regarding fine-tuning, which suggests training the classifier 

prior to unfreezing the convolutional base (Chollet, 2018, 150) we show preferable results when 

unfreezing the convolutional bases of transfer learning models and permitting them to train along 

with the classifier. This method runs the risk of destroying the higher-level features generated by 

each convolutional base but provides excellent results on this dataset when paired with a very 

low learning rate.  

To avoid overfitting, which happens quickly on a dataset this size, training epochs have 

been limited to just 10 during fine tuning, followed by five more epochs which run while the 

convolutional bases are completely frozen. Training takes place on 320 examples (160 examples 

of each class) with testing being done on the remaining 80 (40 examples in each class). Because 

the training and test datasets are divided equally into animate and inanimate classes, total 

classification accuracy is an appropriate measure of model performance and is used to evaluate 

model success in this case.  Finally, results for each model are compared side by side. Results of 

feature extraction and fine-tuning are discussed and an attempt is made to illuminate why some 

model architectures are better suited to this particular dataset. 

Results 

 All model architectures presented in this section ran a minimum of five separate 

experiments on the training and test data. The results presented here are representative of the 

median test accuracy outcomes for each model except the basic CNN, for which the trial run 

with the best test accuracy results is presented. As can be seen in figure 1.2, the basic 

convolutional neural network reached peak accuracy near 62% before promptly crashing. All 

trials for this basic model exceeding 10 epochs led to significant overfit. No other trial run for 

this model exceeded the 62% accuracy reached during the eighth epoch of the trial presented 
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here. Most trials for this model topped out in the 55 – 59% range and typically this took place at 

or near the eighth epoch with test results subsequently crashing due to overfit. 

Figure 1.2 

  Baseline CNN Classification Accuracy 

 

 Moving on to the results of other models, please note that the scale used in the image 

above is unique. This scale adjustment for the basic model was done in order to fully capture the 

range of results. Every model from here forward uses a uniform scale between 0.5 and 1.0 for 

accuracy. 

Figure 1.3 below displays results for each of our three transfer learning models 

(Xception, MobileNet, and VGG16). This figure also separates results for the first ten epochs 

from the last five. This has been done in order to distinguish the progression of each model while 

fully trainable (the first ten epochs) and while trainable only for the classifier portion with 

convolutional base completely frozen (the final five epochs). What permits this strategy to work 

well is the low learning rate (1e-05, or 0.000001). Training with unfrozen convolutional bases 

here permits the flexibility necessary for each pre-trained model to adapt to the idiosyncricies of 

this highly diverse dataset. The low learning rate and minimal number of training epochs ensure 
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that this fine-tuning process does not destroy the feature representations which make these 

pretrained convolutional bases desirable in the first place.  

Figure 1.3 

 

Unfrozen Xception (First 10 Epochs) 

 
 

 

Frozen Xception (Last 5 Epochs) 

 
 

 

Unfrozen MobileNet (First 10 Epochs) 

 

 

Frozen MobileNet (Last 5 Epochs) 

 

 

Unfrozen VGG16 (First 10 Epochs) 

 

 

Frozen VGG16 (Last 5 Epochs) 
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The first model, which employs an Xception CNN base, routinely reaches 65% accuracy 

during the first ten epochs and tops out at or near 70% during the final five. The MobileNet 

based model does a bit better, reaching 70-73% test accuracy during the first ten epochs and 

topping out near 75% during the final five. The last model, which uses the VGG16 convolutional 

base, is the best of the three. It routinely reaches 80% accuracy within the first ten epochs, 

occasionally reaching close to 83% in the final five as the classifier learns more about the feature 

representations it recieves from the base. 

Analysis and Interpretation 

 Our VGG16 based model significantly outshines the competition by reaching and 

sustaining 80% classification accuracy on the total dataset. Figure 1.4 below shows three images 

from our test set as well as how each model classifies them, with green indicating correct 

classification and yellow incorrect. Among the three models, VGG16 correctly classifies two 

images, with MobileNet and Xception each correctly guessing only one of the three.  

Figure 1.4 

Image 

   

VGG16 Classification Animate Inanimate Animate 

MobileNet Classification Inanimate Animate Inanimate 

Xception Classification Inanimate Inanimate Animate 

 

What is notable about these images is how each one resists classification slightly 

differently. The first image is an illustration of a squid. The eye on this creature is small and hard 

to pick out, making it a challenging image if the classifying model relies on the finding of a face 
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in order to identify the image as belonging to the animate class. Only the VGG16 model 

accurately classifies this image. The second image is an illustration of a video game controller, 

the shape of which gives the general impression of eyes. VGG16 and Xception both correctly 

identify this as being inanimate, but the shape appears to fool MobileNet. Finally, the third image 

is of a Mandlebrot fractal. Only MobileNet correctly identifies this image as inanimate, which 

brings us to a key finding regarding shape complexity and the role fractal dimensions play in the 

distinction between animate and inanimate. 

 VGG16 is the only model to correctly identify both the cartoon squid as animate and the 

video game controller as inanimate, but it incorrectly classifies the Mandelbrot fractal. One 

possible explanation for this is the difference in complexity between organic structures (many of 

which are living) and manufactured structures. The relative simplicity of straight lines in human 

manufactured things makes them distinct from patterns occurring in nature. Neural networks are 

capable of leveraging fractal dimension in such tasks as histological classification (Roberto, 

Lumini, Neves, and Nascimento, 2021) and it is reasonable to assume that shape complexity or 

fractal dimension could be playing a role here too. To explore how fractal dimension might be 

playing a role in the success of our VGG16 classifier, we turn to images from outside the current 

dataset. Here again, green indicates correct classification and yellow incorrect. 

Figure 1.5 

Image 

 
 

  

VGG16 Classification Animate Animate Animate Animate 

MobileNet Classification Inanimate Inanimate Inanimate Inanimate 

Xception Classification Animate Animate Inanimate Inanimate 
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 The first two images are fractals: the Julia set, and Mandelbrot set, respectively. Our 

VGG16 and Xception based models both classify these as belonging to the animate class, which 

is inaccurate. The second two images are of microscopic organisms. Only VGG16 correctly 

identifies these as animate entities, likely due to the complexity of their shape. It is worth noting 

that Xception performs the worst on these images, classifying the fractal sets as animate and the 

micro-organisms as inanimate. MobileNet sees nothing animate in any of the images. Figure 1.6 

below illustrates how these classifiers perform on a different set of images. This one consists of 

human manufactured items; toy robots and cars with identifiable faces. 

Figure 1.6 

Image 

  

 
 

VGG16 

Classification 

Inanimate Inanimate Animate Inanimate 

MobileNet 

Classification 

Animate Animate Inanimate Inanimate 

Xception 

Classification 

Animate Animate Animate Animate 

 

 Because the true problem these classifiers were trained to solve was whether the images 

were representations of animate or inanimate things, (not whether they were alive in a strict 

sense) the correct classification of these images is open to interpretation. In the case of the toy 

robots, they roughly imitate human form. In the case of the cars, there is an obvious 

representation of a face. Correctness is not of interest here. What is of interest is how each model 

sees these images. VGG16 sees only one animate image out of the four and it is the image with 



12 
 

fewer straight lines. The boxy looking robots do not register for VGG16 as animate. Both the 

MobileNet and Xception based models see the robots as animate. Xception sees the same in the 

cars, but here MobileNet draws a distinction that the cars are inanimate. Clearly the key for our 

best model, the VGG16 based model, is shape complexity. Even when a face is visible, such as 

with the toy robots in figure 1.6, the straight lines and boxy shape make our VGG16 based model 

classify the image as a representation of an inanimate object. 

Conclusions 

 When working with datasets of only a few hundred images and high intra-class diversity, 

untrained CNN models are untenable. However, transfer learning and data augmentation 

techniques serve as powerful tools for working with small data, even when class distinctions are 

abstract and intra-class diversity is high. Choosing the proper pre-trained model for feature 

extraction and transfer learning purposes is vital. Not all models will be equally well suited to 

every task.  

 The nature of the classification problem examined here was complex. Identifying an 

abstract element of representation (animate or inanimate) among a small set of images with high 

intra-class diversity proved to be insurmountable for our untrained convolutional neural network. 

Through transfer learning and data augmentation, we were able to reach 80% classification 

accuracy on a consistent basis. Critical to reaching this level of accuracy was the ability of our 

VGG16 based model to identify the relationship between shape complexity and class. However, 

this left our VGG16 based model vulnerable to misclassifying images with high levels of 

complexity, such as the Mandelbrot and Julia sets. Had this set of images contained more 

representations of naturally occurring inanimate objects, such as lakes, rivers, and trees, which 

present more complex shapes, we likely have seen very different results. In this instance 
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however, the consistent themes present in our dataset made the VGG16 based model noticeably 

more successful than the competition.  

Directions for Future Work 

 One method left unexplored in this paper is that of using an ensemble classifier. As the 

results show, each of the three models goes about classifying images in a different manner. It is 

conceivable that the vulnerability of our VGG16 based model to misclassifying fractal images as 

animate entities could be overcome by including the input of one or both of the other two 

models. Likewise, the tendency of the Xception based model to misclassify images in which 

faces and eyes appear to exist on inanimate things, could be overcome by including the input of 

one or both of the other two models. An ensemble method would likely improve overall 

classification accuracy. 
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