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Abstract

Small datasets are the reality in many real-world applications. This presents a serious
challenge to the practicability of convolutional neural networks, which require large data sources
to properly train. This paper investigates methods of transfer learning for use on small-scale
datasets in computer vision applications. The dataset used here consists of 400 images of beer
labels divided evenly across two representational classes. Two key features of this dataset make
it difficult for convolutional neural networks to work with; its small size, and its intra-class
representational diversity (two members of the same class may be stylistically very different).
Because small data require compact, well regularized models to avoid overfitting (Chollet, 2018,
130), this dataset constrains classifier size. However, intra-class diversity and the presence of
subtle class features demands higher level feature representation. Experimentation begins by
establishing the relative difficulty of this dataset, where simple convolutional neural networks
capable of 82% or better on the well-known cat-dog classification problem show results no better
than 55-60% here. Next, through data augmentation, feature extraction and fine-tuning
techniques in transfer learning, we construct several models capable of classification accuracy up

to 80%, even on this very challenging dataset.

Introduction

This paper evaluates the results of several transfer learning methods, including feature
extraction and fine tuning with data augmentation, on a challenging dataset of small size with

high intra-class diversity and subtle class features. Using 400 images of different beer labels



handpicked for the purpose of presenting significant challenges to traditional CNN classification
methods, we establish a baseline total accuracy of only 55-60% for a basic convolutional model.
The ability of this admittedly simple model to classify images from the well-known cat-dog

classification problem at 82% accuracy or better underscores the relative difficulty of our current

dataset.

Next, we demonstrate how accuracy of up to 80% is achievable using data augmentation
and transfer learning techniques including feature extraction and fine-tuning. Pretrained models
including VGG16, Xception, and MobileNet are all evaluated based on performance with this
dataset. This paper concludes with a discussion of key differences between each of these models
and an attempt is made to uncover essential differences in feature representation relevant to the

current dataset.

Literature Review

The recent literature is replete with work on the topic of adapting CNN architectures to
operate in diverse circumstances with minimal data. One popular method of grappling with
scarce data is to harness generative adversarial networks for the purpose of producing new
observations with which to pad the training data. This approach has shown to be useful in credit
card fraud detection where the extreme imbalance of classes between fraudulent and non-
fraudulent transactions creates the need for a great deal of observations (Fiore, De Santis, Perla,
Zanetti, and Palmieri, 2019). It has proven vital in certain facial recognition tasks as well, where
even databases of 60,000 images are considered relatively small and can be difficult to train on
without augmentation from artificially generated images (Saez, Ming, and Hartnett, 2021).

Although recent work has shown promise for more data efficient GAN training (Zhao, Lie, Lin



Han, and Zhu, 2020) GANSs remain impractical for datasets with only a few hundred examples

and high levels of intra-class diversity.

Transfer learning, the art of repurposing models which have been pre-trained on abundant
data sources to suit new applications in data-exiguous circumstances via fine-tuning or feature
extraction, is another popular approach to grappling with the problem of minimal data. This
method has shown to be successful in such disparate areas as battery capacity estimation, where
training on minimal examples is computationally desirable (Yihuan, Kang, Xuan, Yanxia, and
Zhang, 2021) and tumor classification, where the availability of public datasets may be minimal
(Kim et.al, 2020). Transfer learning methods have also been successful while training on
minimal examples in the identification of rice plant disease (Chen, Nanehkaran, Zhang, and Zeb,

2021) and many other applications.

The advantages to leveraging higher level feature extraction from models trained on
ImageNet or other databases is well established, and there now exists an abundance of pre-
trained models to choose from, each with distinct advantages. The speed, efficiency, and
portability of MobileNet, for example, makes it a desirable transfer learning candidate for such
tasks as object detection in autonomous vehicles (Carranza-Garcia, Torres-Mateo, Lara-Benitez,
and Garcia-Gutierrez, 2021). Bulkier models, such as ResNet50 and VGG16 provide value as the
basis for feature extraction in applications where processing costs are less of a concern, such as
detecting signs of bleeding in the digestive tract using endoscopic images (Caroppo, Leone, and
Siciliano, 2021). Whatever the application, subtle differences between models can lead to big
differences in classification performance. When engaging in transfer learning for the purpose of

solving small data classification problems, understanding these differences is vital to success.



Data

Beer label images provide a rich and diverse data source for the project at hand. This
dataset was collected via Google Image search and contains 400 images of beer can labels
divided equally into representations of animate entities and representations of inanimate entities.
Image selection was done with the specific intention of developing a challenging dataset with
significant intra-class diversity. Where possible, similar styles were paired across classes. This
was done with the intention of minimizing potential for stylistic elements inherent in certain
brands from becoming identifiable as differentiators of class. Image size and quality are variable

by design.

Here the animate class includes both realistic and cartoon-like depictions of human
beings, animals, and mythical creatures. Only those creatures with identifiable facial features are
included (no shellfish, for example). Some labels included in the animate class depict creatures
which are common to the class (such as people and dogs). Others in the animate class are unique
instances which represent the sole example of their species in the dataset (only one image of a
turtle, for example). Among the images representing the inanimate class, a mix of landscapes,
buildings, vehicles, and geometric patterns can be found. Figure 1.1 below illustrates a few

examples from each class.
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Methods

To evaluate the performance of transfer learning methods on this dataset, we compare
three pre-trained convolutional models; Xception, MobileNet, and VGG16, run end to end on an
augmented data generator which stretches, rotates, and inverts images in order to maximize the
very small amount of image data available. In each case, we leverage the higher-level
representations generated by these more complex, pre-trained models via feature extraction and
fine-tuning. These features feed forward into an untrained classifier consisting of two hidden
layers with dropout, and binary output, which sits on top of the convolutional base of each

pretrained model.



Contrary to common advice regarding fine-tuning, which suggests training the classifier
prior to unfreezing the convolutional base (Chollet, 2018, 150) we show preferable results when
unfreezing the convolutional bases of transfer learning models and permitting them to train along
with the classifier. This method runs the risk of destroying the higher-level features generated by
each convolutional base but provides excellent results on this dataset when paired with a very

low learning rate.

To avoid overfitting, which happens quickly on a dataset this size, training epochs have
been limited to just 10 during fine tuning, followed by five more epochs which run while the
convolutional bases are completely frozen. Training takes place on 320 examples (160 examples
of each class) with testing being done on the remaining 80 (40 examples in each class). Because
the training and test datasets are divided equally into animate and inanimate classes, total
classification accuracy is an appropriate measure of model performance and is used to evaluate
model success in this case. Finally, results for each model are compared side by side. Results of
feature extraction and fine-tuning are discussed and an attempt is made to illuminate why some

model architectures are better suited to this particular dataset.

Results

All model architectures presented in this section ran a minimum of five separate
experiments on the training and test data. The results presented here are representative of the
median test accuracy outcomes for each model except the basic CNN, for which the trial run
with the best test accuracy results is presented. As can be seen in figure 1.2, the basic
convolutional neural network reached peak accuracy near 62% before promptly crashing. All
trials for this basic model exceeding 10 epochs led to significant overfit. No other trial run for

this model exceeded the 62% accuracy reached during the eighth epoch of the trial presented



here. Most trials for this model topped out in the 55 — 59% range and typically this took place at

or near the eighth epoch with test results subsequently crashing due to overfit.

Figure 1.2
Baseline CNN Classification Accuracy

— Train Accuracy
—— Test Accuracy

Moving on to the results of other models, please note that the scale used in the image
above is unique. This scale adjustment for the basic model was done in order to fully capture the
range of results. Every model from here forward uses a uniform scale between 0.5 and 1.0 for

accuracy.

Figure 1.3 below displays results for each of our three transfer learning models
(Xception, MobileNet, and VGG16). This figure also separates results for the first ten epochs
from the last five. This has been done in order to distinguish the progression of each model while
fully trainable (the first ten epochs) and while trainable only for the classifier portion with
convolutional base completely frozen (the final five epochs). What permits this strategy to work
well is the low learning rate (1e-05, or 0.000001). Training with unfrozen convolutional bases
here permits the flexibility necessary for each pre-trained model to adapt to the idiosyncricies of

this highly diverse dataset. The low learning rate and minimal number of training epochs ensure



that this fine-tuning process does not destroy the feature representations which make these

pretrained convolutional bases desirable in the first place.

Figure 1.3
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The first model, which employs an Xception CNN base, routinely reaches 65% accuracy
during the first ten epochs and tops out at or near 70% during the final five. The MobileNet
based model does a bit better, reaching 70-73% test accuracy during the first ten epochs and
topping out near 75% during the final five. The last model, which uses the VGG16 convolutional
base, is the best of the three. It routinely reaches 80% accuracy within the first ten epochs,
occasionally reaching close to 83% in the final five as the classifier learns more about the feature

representations it recieves from the base.
Analysis and Interpretation

Our VGG16 based model significantly outshines the competition by reaching and
sustaining 80% classification accuracy on the total dataset. Figure 1.4 below shows three images
from our test set as well as how each model classifies them, with green indicating correct
classification and yellow incorrect. Among the three models, VGG16 correctly classifies two

images, with MobileNet and Xception each correctly guessing only one of the three.

Figure 1.4
Image
VGG16 Classification
MobileNet Classification Inanimate
Xception Classification Inanimate

What is notable about these images is how each one resists classification slightly
differently. The first image is an illustration of a squid. The eye on this creature is small and hard

to pick out, making it a challenging image if the classifying model relies on the finding of a face
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in order to identify the image as belonging to the animate class. Only the VGG16 model
accurately classifies this image. The second image is an illustration of a video game controller,
the shape of which gives the general impression of eyes. VGG16 and Xception both correctly
identify this as being inanimate, but the shape appears to fool MobileNet. Finally, the third image
is of a Mandlebrot fractal. Only MobileNet correctly identifies this image as inanimate, which
brings us to a key finding regarding shape complexity and the role fractal dimensions play in the

distinction between animate and inanimate.

VGG16 is the only model to correctly identify both the cartoon squid as animate and the
video game controller as inanimate, but it incorrectly classifies the Mandelbrot fractal. One
possible explanation for this is the difference in complexity between organic structures (many of
which are living) and manufactured structures. The relative simplicity of straight lines in human
manufactured things makes them distinct from patterns occurring in nature. Neural networks are
capable of leveraging fractal dimension in such tasks as histological classification (Roberto,
Lumini, Neves, and Nascimento, 2021) and it is reasonable to assume that shape complexity or
fractal dimension could be playing a role here too. To explore how fractal dimension might be
playing a role in the success of our VGG16 classifier, we turn to images from outside the current

dataset. Here again, green indicates correct classification and yellow incorrect.

Figure 1.5
Image
VGG16 Classification Animate Animate
MobileNet Classification Inanimate Inanimate
Xception Classification Animate Animate Inanimate Inanimate
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The first two images are fractals: the Julia set, and Mandelbrot set, respectively. Our
VGG16 and Xception based models both classify these as belonging to the animate class, which
is inaccurate. The second two images are of microscopic organisms. Only VGG16 correctly
identifies these as animate entities, likely due to the complexity of their shape. It is worth noting
that Xception performs the worst on these images, classifying the fractal sets as animate and the
micro-organisms as inanimate. MobileNet sees nothing animate in any of the images. Figure 1.6
below illustrates how these classifiers perform on a different set of images. This one consists of

human manufactured items; toy robots and cars with identifiable faces.

Figure 1.6
Image

VGG16 Inanimate Inanimate Animate Inanimate
Classification

MobileNet Animate Animate Inanimate Inanimate
Classification

Xception Animate Animate Animate Animate
Classification

Because the true problem these classifiers were trained to solve was whether the images
were representations of animate or inanimate things, (not whether they were alive in a strict
sense) the correct classification of these images is open to interpretation. In the case of the toy
robots, they roughly imitate human form. In the case of the cars, there is an obvious
representation of a face. Correctness is not of interest here. What is of interest is how each model

sees these images. VGG16 sees only one animate image out of the four and it is the image with
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fewer straight lines. The boxy looking robots do not register for VGG16 as animate. Both the
MobileNet and Xception based models see the robots as animate. Xception sees the same in the
cars, but here MobileNet draws a distinction that the cars are inanimate. Clearly the key for our
best model, the VGG16 based model, is shape complexity. Even when a face is visible, such as
with the toy robots in figure 1.6, the straight lines and boxy shape make our VGG16 based model

classify the image as a representation of an inanimate object.

Conclusions

When working with datasets of only a few hundred images and high intra-class diversity,
untrained CNN models are untenable. However, transfer learning and data augmentation
techniques serve as powerful tools for working with small data, even when class distinctions are
abstract and intra-class diversity is high. Choosing the proper pre-trained model for feature
extraction and transfer learning purposes is vital. Not all models will be equally well suited to

every task.

The nature of the classification problem examined here was complex. Identifying an
abstract element of representation (animate or inanimate) among a small set of images with high
intra-class diversity proved to be insurmountable for our untrained convolutional neural network.
Through transfer learning and data augmentation, we were able to reach 80% classification
accuracy on a consistent basis. Critical to reaching this level of accuracy was the ability of our
VGG16 based model to identify the relationship between shape complexity and class. However,
this left our VGG16 based model vulnerable to misclassifying images with high levels of
complexity, such as the Mandelbrot and Julia sets. Had this set of images contained more
representations of naturally occurring inanimate objects, such as lakes, rivers, and trees, which

present more complex shapes, we likely have seen very different results. In this instance
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however, the consistent themes present in our dataset made the VGG16 based model noticeably

more successful than the competition.

Directions for Future Work

One method left unexplored in this paper is that of using an ensemble classifier. As the
results show, each of the three models goes about classifying images in a different manner. It is
conceivable that the vulnerability of our VGG16 based model to misclassifying fractal images as
animate entities could be overcome by including the input of one or both of the other two
models. Likewise, the tendency of the Xception based model to misclassify images in which
faces and eyes appear to exist on inanimate things, could be overcome by including the input of
one or both of the other two models. An ensemble method would likely improve overall

classification accuracy.
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